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Received 23 May 1996

Abstract. The phenomenon of separatrix splitting and complicated homoclinic structures
constitute a symptom of chaos, as pointed out by Poincaré more than a century ago. Taking
a time-discrete dynamical system with a double-well potential as an example, this interesting
feature is demonstrated analytically on the basis ofasymptotic expansions beyond all orders.
Violent undulations of the unstable manifold in the extreme vicinity of hyperbolic fixed points
are recovered excellently. Comparison with results for standard and Henon maps is also made.

1. Introduction

The bifurcation of separatrices and homoclinic or heteroclinic structures are well known to
lead to genesis of chaos in conservative dynamical systems [1]. While numerical iterations
of low-dimensional mappings easily provide these complicated structures, it is extremely
difficult to derive them analytically. However, the difficulty will now be overcome by using
the asymptotic expansion beyond all orders. This method was first proposed and applied
to a standard map by Lazutkin and coworkers [2, 3] and to other systems [4]. A similar
approach was developed independently by Kruskal and Segur [5] in the context of crystal
growth. The method was improved by using the theoretical tools of Borel summability
and Stokes phenomenon [6–8]. However, this updated method is still in its infancy and its
application can be found only in a few references, i.e. on standard [6] and Henon [8] maps.
So it deserves to be further enriched by providing additional applications. In this paper we
shall apply the updated method to the time-discrete dynamical system with a double-well
potential.

We shall analyse a symplectic mapping obtained by time discretization of canonical
equations for the dynamical system with a single degree of freedom. Consider the canonical
equation of motion

dq(t)/dt = p(t)

dp/dt = −dU(q)/dq.
(1)

For concreteness, we choose a double-well potential

U(q) = (q − a)2(q + a)2 (2)

which is often encountered in describing the phase-transition phenomena. A set of
equations (1) with equation (2) are widely seen in various contexts. The Duffing equation,
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in the absence of damping and driving fields, takes the identical form; it would also be
reached if we substitute9(x, t) = eiωtq(x) in the cubic nonlinear Schrödinger equation and
then replacex by t in the resultant form. While the above ordinary differential equation
is integrable, we shall consider its time-difference variant by discretization of time (with
time differenceσ ). Among many ways of time discretization the symplectic mapping is the
most essential, which is given by

qn+1 = qn + σpn+1

pn+1 = pn − σ dU(q)/dq|q=qn
= pn − 4σqn(qn + a)(qn − a).

(3)

(By rescalingσp → p, (3) is reduced to the map available from a periodically kicked
system whereσ 2 plays the role of the kicking strength. In this paper, however, we shall
choose the form (3) for convenience.)

The Jacobi matrix corresponding to (3) is

M =
( ∂qn+1

∂qn

∂qn+1

∂pn

∂pn+1

∂qn

∂pn+1

∂pn

)
=

(
1 − 4σ 2(3q2

n − a2) σ

−4σ(3q2
n − a2) 1

)
. (4)

The present map is area-preserving since detM = 1, and satisfies the symplecticity condition

MT JM = J with J =
(

0 1
−1 0

)
. The map (3) and its continuum (1) and (2) have the

common fixed points, i.e. one hyperbolic at(q, p) = (0, 0) and the other two elliptic at
(q, p) = (±a, 0).

For σ = 0 (i.e. in the continuum limit) the phase space is occupied by regular
trajectories including a separatrix, i.e. the marginal trajectory by which localized and
extended trajectories are segregated (see figure 1(a)). The separatrix is the most unstable
against a perturbation and consists of a pair of degenerate manifolds: one is unstable and
going away from the hyperbolic fixed point (HFP) while the other is stable and coming
into HFP. On switching a perturbation arising fromσ 6= 0, the splitting of the separatrix
occurs yielding infinite number of crossing points (: homoclinic points) that accumulate
as HFP is approached (see figure 1(b)). The separatrix splitting and homoclinic structures
cause Birkhoff–Smale’s horse-shoe mechanism generating the chaos. We shall make the

Figure 1. Trajectories in phase space. (a) σ = 0, separatrices are emerging from hyperbolic
fixed point at(0, 0). (b) σ 6= 0, splitting of degenerate separatrices for the right half.
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asymptotic analytical expansion of the unstable manifold emanating from HFP at(0, 0).
While we shall concentrate on the system with a double-well potential, the following analysis
will hold to more general systems.

2. External equation

Prescribingqn andqn+1 asy(t) andy(t +σ), respectively, let us concentrate on the unstable
manifold yu(t) with the initial condition limt→−∞ yu(t) = 0. For brevity,yu(t) will be
taken asy(t) in the following. A pair of equations (3) is then reduced to the second-order
difference equation fory(t):

12y(t)/σ 2 = −4y(t)(y(t) − a)(y(t) + a) (5)

with 12y(t) = y(t − σ) + y(t + σ) − 2y(t).
Let us first attempt to apply the ordinary perturbation theory as proposed by Melnikov.

Using Taylor expansion as

12y(t) = σ 2 d2y(t)/dt2 + 2
∞∑
l=2

(σ 2l/(2l)!)y(2l)(t)

one may rewrite (5) as

d2y(t)/dt2 = −4y(t)(y(t) − a)(y(t) + a) − 2
∞∑
l=2

σ 2(l−1)((2l)!)−1y(2l)(t). (6)

Taking the last term on the r.h.s. of (6) as perturbations, we shall expand the solutiony(t)

in the power series ofσ 2 as

y(t) = y0(t) = y00(t) + σ 2y01(t) + σ 4y02(t) + · · · . (7)

The lower index ofy0(t) is used to indicate that the solution in (7) will turn out to be
incomplete without ‘terms beyond all orders’. Using (7) in (6), equations are successively
obtained for each power ofσ 2:

d2y00(t)/dt2 = −4y00(t)(y00(t) + a)(y00(t) − a) (8a)

d2y01(t)/dt2 = −4(3y00(t)
2 − a2)y01(t) − (1/12) d4y00(t)/dt4. (8b)

For the unperturbed system (8a), we have

y00(t) =
√

2a/ cosh(2at). (9)

y0n(t) for n = 1, 2, . . . should bear the following properties:
(i) They should satisfy the boundary condition ensuring the orbit (constructed from (7))

to start from HFP at(0, 0):

lim
t→−∞ y0n(t) = 0 (n = 0, 1, . . .).

(ii) Their parity is even:y0n(−t) = y0n(t) for n = 1, 2, . . . because of the even-parity
nature of the inhomogeneous term on the r.h.s. of (8b) and the uniqueness of the solution
for y0n(t) for n = 1, 2, . . . under the unique initial condition.

The solution of (8b) is a sum of a general solution for its homogeneous part and the
special one for the full inhomogeneous equation. The former is a linear combination of two
independent solutionsv1(t) andv2(t) given by

v1(t) = −2
√

2a2 sinh[2at ]

cosh2[2at ]
(10a)

v2(t) = − 1

8
√

2a3

(
6at sinh[2at ]

cosh2[2at ]
− 3

cosh[2at ]
+ cosh[2at ]

)
. (10b)
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Any linear combination of (10a) and (10b), however, cannot satisfy both (i) and (ii) at
the same time:v1(t) has an odd parity and is incompatible with (ii);v2(t) diverges with
t → −∞. Hence the solution of (8b) is inevitably provided by the latter special contribution
alone, i.e.

y01(t) = a3
√

2

12 cosh3[2at ]
(9 − 7 cosh[4at ] + 2at sinh[4at ]). (11)

Because of the even-parity nature, the result (11) can lead to no splitting of the separatrix,
which is not consistent with the issue of numerical iteration of the map (3) withσ > 0.
This indicates a breakdown of the application of Melnikov’s method.

The above paradox is caused by the singularities of (9) and (11) att = ± iπ
4a

(2m+1) with
m = 0, 1, . . . encountered in changing the timet continuously fromt = −∞ to t = +∞
in the complex time plane. In fact, in the neighbourhood oftc = iπ

4a

y00 ∼ c0i

(t − tc)
with c0 = −

√
2

2
. (12a)

Similarly, reflecting the degree of the singularity of the inhomogeneous part of (8b), we
find

y01 ∼ c1i

(t − tc)3
with c1 =

√
2

6
...

y0n ∼ cni

(t − tc)2n+1
with cn ∼ (−1)n+1(2n + 3)!/(2π)2n+1 for n → ∞.

(12b)

The behaviour in (12) indicates that all orders in the expansion (7) give the contributions
of the identical magnitude ofO(σ−1) at |t − tc| ∼ σ and that the perturbation theory breaks
down there. The crucial point is that we meet the Stokes phenomenon: (i) Stokes line
is emanating fromt = tc; (ii) a suitable odd-parity correction should be incorporated in
crossing this line.

To analyse this phenomenon and to capture the ‘terms beyond all orders’, we shall
derive theinternal equation, effective in the vicinity oft = tc.

Figure 2. Transformation of vicinity oft = tc from the t plane to the enlargedz plane.
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3. Internal equation

Let us enlarge a scale of time in the neighbourhood oft = tc and decrease the magnitude
of y(t) by making a transformation (see, figure 2) as

t = iπ

4a
+ σz (13a)

8(z) = (σ/i)y(t). (13b)

Using (13) in the original equation (5), we obtain theinternal equation:

128(z) = 4(83(z) + σ 2a28(z)) (14)

with 128(z) = 8(z + 1) + 8(z − 1) − 28(z). (Note: The tiny circle|t − tc| = 1 is
now mapped to the big one|z| = 1/σ(� 1).) By suppressing the small contribution of
O(σ 2) which gives pre-exponential corrections in the result, (14) becomes aσ -independent
equation

128(z) = 483(z). (15)

Let 8u and8s be the solutions for unstable and stable manifolds respectively. In the limit
z → ∞ with Rez < 0 (Rez > 0), the solution of (15) has an asymptotic form

8u(8s) ∼ 800 =
∞∑
l=0

cl

z2l+1
(16)

which retains the connection with the external solution (in the region withz → ∞, σ → 0
andσz → 0) (see figure 2):

(σ/i)yu(t) ∼ (σ/i)y0(t) ∼
∞∑
l=0

clσ
2l+1(

t − iπ
4a

)2l+1 = 800(z). (17)

For any finite value ofz, however,cl grows much larger thanz2l+1 with increasingl (:
cl ∼ (−1)l+1(2l + 3)!/(2π)2l+1, as seen in (12b)) so that, except for|z| = ∞, (16) diverges
and becomes meaningless. Since the asymptotic expansions atz → −∞ and z → ∞
cannot, therefore, be connected smoothly so long as the finitez region is crossed, we shall
take a counter-clockwise path along the lower semicircle with|z| = ∞. In this case the
Stokes phenomenon appears: in crossing the Stokes line at arg(z) = −π/2, we acquire an
exponentially small term responsible for the separatrix splitting that is being searched for.

In this context we shall recourse to the idea ofBorel summation. The Borel summation
provides the way to find a convergent sum from divergent series by resorting to the Laplace
transformation. (The idea is based on the resummation of divergent series by a suitable
reordering of the terms.) The Borel or inverse Laplace transformation of (15) yields

2(cosh[p] − 1)V (p) = 4V (p) ∗ V (p) ∗ V (p) (18)

where we have used the transformations

8(z) =
∫ ∞

0
e−pzV (p) dp,

128(z) =
∫ ∞

0
e−pz2[cosh(p) − 1]V (p) dp.

The r.h.s. of (18) is a convolution defined by

V (p) ∗ V (p) ∗ V (p) =
∫ p

0

∫ p−τ ′

0
V (p − τ ′ − τ)V (τ)V (τ ′) dτ dτ ′.
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The Borel transformation of the asymptotic solution (16) leads to

V (p) =
∞∑
l=0

cl

(2l)!
p2l . (19)

Because of the convergence of coefficientscl

(2l)! with l → ∞, divergent series800(z) will be
made Borel summable. In terms ofV (p) in (19), solutions for stable and unstable manifolds
are given by

8s(z) =
∫ ∞

0
e−pzV (p) dp (20a)

8u(z) =
∫ −∞

0
e−pzV (p) dp. (20b)

Thanks to the convergence ofV (p), the integrals in (20a) and (20b) are convergent in the
right (Rez > 0) and left(Rez < 0) semicircles, respectively. Hence both of them are Borel
summable.

As recognized in (18),V (p) has singularities atp = ±2π in(n = 1, 2, . . .). In
Im z < 0(|z| → ∞) region, 8(z) can be obtained by taking thep-integration along the
counter-clockwise path surrounding the positive imaginaryp axis and its resultant expression
is given by

8(z) = 80(z) + 81(z)e
−2π iz + 82(z)e

−4π iz + · · · . (21)

The expansion (21) captures exponentially small terms beyond all orders. This point will
be made more explicit in terms of the difference function defined in Imz < 0 as,

8−(z) = 8s(z) − 8u(z) =
∫

γ

e−pzV (p) dp (22)

where the integration pathγ is indicated in figure 3(a). The poles ofV (p) contribute to
the integration in (22), leading to the converged values of8−(z) in the z region indicated
in figure 3(b). 8− is a direct manifestation of the separatrix splitting. In the limit|z| → ∞
with Im z < 0 and Rez > 0, 8u is expressed as in (21) since, in this region,8s ∼ 800.

Figure 3. (a) Integration pathγ in the p plane for obtaining8−. γ is deformable wherever
no pole distributes. (b) Regions of convergence in thez plane; vertical-, horizontal- and cross-
hatched regions for8u, 8s and8−, respectively.
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The Stokes phenomenon occurs on the Stokes line at argz = −π/2 where the asymptotic
solution (21) for|z| = ∞ demonstrates an abrupt change. On the Stokes line, noting the
relation8u(z) = −8s(−z) and8s(z

∗) = 8∗
s (z), we find

8u(z) = −8∗
s (z). (23)

From (22) and (23), the equality

8−(z) = −2 Re[8u(z)] (24)

is obtained, which implies that the real part of8u leads to the separatrix splitting.
We shall proceed to substitute the expansion (21) into the internal equation in (15),

deriving the equations successively in each power of the exponential:

1280(z) = 483
0(z) (25a)

1281(z) = 1282
0(z)81(z) (25b)

. . . .

The asymptotic(z → ∞) solution to the lowest order is given by

80 = −
√

2

2

1

z
+

√
2

6

1

z3
+ · · · . (26)

Using 80 ∼ −
√

2
2

1
z

in (25b), the leading term of81(z) turns out to be∼ z3. This issue
reflects thatV (p) has a singularity described as

V (p) ∼ k

(p − 2π i)4
. (27)

In fact, we observe

8− =
∫

γ

e−pzV (p) dp

∼ 2π i Res

[
e−pz k

(p − 2π i)4

]
p=2π i

= lim
p→2π i

2π ik
1

(4 − 1)!

d3

dp3

{
(p − 2π i)4 e−pz

(p − 2π i)4

}
= −2πk

1

3!
z3e−2π iz ∼ cz3e−2π iz. (28)

c(= −2πk/3!) is aStokes constantto be evaluated. Except for this numerical factor we have
succeeded in demonstrating the exponentially small term beyond all orders. By defining

K = lim
p→2π i

(p − 2π i)B[z−380(z)](p) (29)

one may putc = 2π iK as recognized in (28). (In (29),B[·](p) implies Borel
transformation.) The next section will be devoted to a computation ofK.

4. Stokes constant

This section is concerned with a technical detail of calculating the Stokes constant (29).
Therefore readers may glance over the following description and move on to section 5.

To begin with, let us define

A(p) = B[z−380(z)](p). (30)
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Applying an elementary formula for the Laplace transformation, we find

A(p) = D(−3)
p V (p) (31)

whereD(−3)
p implies triple integrations over variablep. Using in (31) the expansion (19)

or its refined version,

V (p) =
∞∑

k=0

vkp
2k with vk = ck

(2k)!
(32)

one obtains

A(p) =
∞∑

k=0

vk

(2k)!

(2k + 3)!
p2k+3 ≡ p3C(p) (33)

and the resultant expansion ofC(p) becomes

C(p) =
∞∑

k=0

bkp
2k (34a)

with

bk = vk(2k)!

(2k + 3)!
. (34b)

Recalling the description above (21),C(p) and A(p) have the common singularities at
p = ±2π i. From (27) and (31), these singularities take the form∼ (p ∓ 2π i)−1. Therefore
the following relation holds

C(p) = χ

(p/2π)2 + 1
= χ(1 − (p/2π)2 + (p/2π)4 + · · ·). (35)

Comparing the coefficients in (34a) and (35), the equality

χ = lim
k→∞

(−1)k(2π)2kbk (36)

is available. Noting that

lim
p→2π i

((p/2π) − i)C(p) = χ lim
p→2π i

(p/2π) − i

(p/2π)2 + 1
= −i

χ

2

K is related toχ via

K = lim
p→2π i

(p − 2π i)A(p) = lim
p→2π i

(p − 2π i)p3C(p) = − (2π)4

2
χ. (37)

Using (34b) and (36) in (37),K in (37) turns out expressible in terms of the limiting value
of vk as

K = − (2π)4

2
lim

k→∞
(−1)k

vk(2π)2k

(2k + 3)(2k + 2)(2k + 1)
. (37′)

The remaining business is to derive the equation for{vk} and to solve it numerically.
Exploiting the formula

pα ∗ pβ ∗ pγ = α!β!γ !

(α + β + γ + 2)!
pα+β+γ+2

with positiveα, β, γ, we have

V (p) ∗ V (p) ∗ V (p) =
∞∑

n=0

p2n+2

(2n + 2)!

∑
j+k+l=n

vjvkvl(2j)!(2k)!(2l)!. (38)
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Figure 4. Convergence of Stokes constantK.

Substituting (38) into the convolution equation (18), we get a recursion equation:

2

(
1

2!
− 2(2m)!

(2m + 2)!
3v2

0

)
vm = −2

∑
j+k=m

0<j,k<m

vk

(2j + 2)!

+ 4

(2m + 2)!

∑
j+k+l=m
06j,k,l<m

vjvkvl(2j)!(2k)!(2l)!. (39)

By numerical iteration of (39) under the initial conditionv0 = −√
2/2 (which is provided

by (12a) and (32)),vm can be evaluated for largem, which will determine the converged
valueK in (37′). Our computation has derived the valueK ∼ 89.6 (see figure 4).

5. Matching of solutions

We are now faced with the procedure of matching the internal solution to the external one.
In this context, we shall envisage the parity of the solution and the way of the Stokes
constant to show up int-plane.

Following the expansion of the internal solution in (21), the refined external solution is
expected to be given by

ŷ(t, σ ) = ŷ0(t, σ ) + S(t){ŷ1(t, σ )e−2π it/σ + ŷ2(t, σ )e−4π it/σ + · · ·} (40)

whereS(t) describes an abrupt change ofŷ(t, σ ) in crossing the Stokes line at Ret = 0
and is represented by the step function

S(t) =


0 t < 0
1
2 t = 0

1 t > 0

. (41)

The substitution of (40) into the original difference equation in (5) yields

12ŷ0(t, σ ) = −4σ 2ŷ0(t, σ )(ŷ0(t, σ ) + a)(ŷ0(t, σ ) − a) (42a)

12ŷ1(t, σ ) = −4σ 2[3(ŷ0(t, σ ))2 − a2]ŷ1(t, σ ). (42b)
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In order to obtain the lowest-order solutiony10(t) for ŷ1(t, σ ), it is enough to take the
lowest-order solutiony00(t) = √

2a/ cosh(2at) for ŷ0(t, σ )(= y00(t) + σ 2y01(t) + · · ·)
(see (9) and (11)). In this approximation,y10(t) satisfies a differential version of (42b):

d2y10(t)/dt2 = −4[3(y00(t))
2 − a2]y10(t). (42b′)

As discussed in section 2, (42b′) has a general solution

y10(t) = c1v1(t) + c2v2(t) (43)

wherev1(t), v2(t) are already given in (10). Integration constantsc1, c2 will be determined
by means of matching with810 in the neighbourhood oft = tc = iπ/(4a). We shall embark
upon this procedure.

Let us introduce a small parameterδ = t − tc. Noting the identities sinh[2at ] =
i cosh[2aδ] and cosh[2at ] = i sinh[2aδ], v1(t) andv2(t) are rewritten as

v1 = 2
√

2a2 i cosh[2aδ]

sinh2[2aδ]
(44a)

v2 = −i

8
√

2a3

{
−6aδ cosh[2aδ]

sinh2[2aδ]
− 3iπ

2

cosh[2aδ]

sinh2[2aδ]
+ 3

sinh[2aδ]
+ sinh[2aδ]

}
. (44b)

As easily observed,v1(t) is an even function ofδ, while v2(t) consists of both even and
odd terms. Recalling the odd parity nature of810 (see (28)),y10(t) in (43) should also be
an odd function ofδ, which is possible so long as

c1 = − 3π

64a5
ic2 (45)

is satisfied. c2 itself is related to the Stokes constant by matchingy10 with 810 on the
negative imaginary axis of thez plane (i.e. on Stokes line) as

1

2

σ

i
y10e−2π it/σ ∼ Re[8u(z)]. (46)

Thanks to (44),

y10 = − i
√

2

5
c2δ

3(1 + O(δ2)) = − i
√

2

5
c2σ

3z3(1 + O(δ2)).

Using in (46) this fact together with (24) and (28), we have

−
√

2

5
c2σ

4z3eπ2/2σa e−2π iz ∼ −cz3 e−2π iz (46′)

and hence

c2 = 5
√

2

2

c

σ 4
e−π2/2σa. (47)

Since we already know the value of Stokes constantc = 2π iK (see the final issue of the
previous section), the value ofc2 in (47) is also determined.

There is an additional contribution arising from another singularity closest to realt axis
at t = t∗c = − iπ

4a
(see above (12)). This contribution is merely a complex conjugate of the

existing result fory10e−2π it/σ . Combining a pair of contributions, the asymptotic behaviour
of yu on the realt axis is eventually given by

yu =
∞∑

n′=0

σ 2n′
y0n′ + 2S(t) Re

[ ∞∑
n=1

∞∑
n′=0

σ 2n′
ynn′e−2niπt/σ

]
. (48)

Thereforeyu is explicitly written up to termsl(≡ n + n′) = 1 as

yu = y00 + σ 2y01 + 2S(t){c1v1(t) cos(2πt/σ) − ic2v2(t) sin(2πt/σ)} (49)

with v1(t) andv2(t) in equations (10).
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Figure 5. Unstable manifold with a hyperbolic fixed point(×). Arrow indicates direction of
journey. Full curve for the analytical results and a series of dots for the results of numerical
iteration of the map: (a) a = 1, σ = 0.2; (b) a = 1, σ = 0.15.

6. Homoclinic structures and intersection angle

Coming back to the symplectic map in (3), the solution for(qu, pu) is constructed by the
replacement

(qu, pu) = (yu(t), (yu(t) − yu(t − σ))/σ ). (50)

Figure 5 shows a nice agreement between the asymptotic analytical result and the issue of
the numerical iteration of the map (3). The sequence of dots are obtained by numerical
iteration of the map (3) for an assembly of initial points on the linearized unstable manifold
at HFP (: on one of the eigenvectors of monodromy matrix (4)). As for the analytical
result, it should be noted: ifσ � 1, the complete Stokes phenomenon occurs ensuring
an abrupt change ofS in (41) in crossing the Stokes line at Ret = 0. For larger values
(σ ∼ 0.1), we shall see more or less incomplete Stokes phenomenon, i.e. a mild growth
of S(t) in a narrow region around Ret = 0. However, this problem can be resolved by
exploiting an appropriate constant value forS(t) for t > 0 in (41). In fact, with a choice
of S = 0.82, (49) proves to work very well for any value ofσ between 0.1 and 0.3 (see
figure 5). Figure 5(a) and (b) are the magnification of the vicinity of HFP. The unstable
manifold starting from HFP, after executing a long clockwise journey, comes back again to
the vicinity of HFP but accompanied by violent undulations. The asymptotic analytical line
proves to fit the result of the numerical iteration of (3), describing the stretching of the area
enclosed by the stable and unstable manifolds. Whenσ is decreased, violent undulations
begin to occur in the further vicinity of HFP: see the extremely small scale unit∼ 10−4 for
both p andq axes in figure 5(b).

Noting that the stable manifold is merely the time reversal of the unstable manifold,
let us proceed to consider an angle for the intersection between the stable and unstable
manifolds at the first homoclinic point att = 0 where the unstable (stable) manifold begins
(ceases) oscillations. Letyu(t) be divided into the even- and odd-parity parts as

yu(t) = I (t) + E(t) (51)

whereI (t) = y00+σ 2y01+· · · andE(t) = 2S(t){c1v1(t) cos(2πt/σ)−ic2v2(t) sin(2πt/σ)}.
Then the unstable and stable manifolds are constructed respectively byqu(t) = I (t) + E(t)
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Figure 6. Intersection angleφ.

andqs(t) = I (t) − E(t) with pu(t) andps(t) expressed by (50). In the neighbourhood of
the first homoclinic point, we shall concentrate on the small time 0< δt1, δt2 � σ � 1
satisfyingpu(δt2) = ps(δt1) (see figure 6). Sinceδt1 ∼ δt2 ∼ δt , the intersection angle is
given byφ = 1q/1p = (qs(δt) − qu(δt))/(ps(δt) − ps(0)). Noting Ė(0), Ė(σ ) � İ (σ )

(Ȧ meansδA/δt) and usingS(0) = 1/2 (see (41)),φ becomes

φ = 2σĖ(0)/İ (σ ) = π(8a6σ)−1|c2| = 5
√

2π2K

8a6σ 5
exp

(
− π2

2aσ

)
showing an essential singularity atσ = 0.

6.1. Comparison with other maps

The refined method of asymptotic expansion beyond all orders developed above is identical
to the one applied to the standard map [6] and Henon map [8], which are given by

xn+1 = xn + αyn+1 yn+1 = yn + β sin(xn) (52)

and

xn+1 = −yn + βxn − λx2
n yn+1 = xn (53)

respectively. These maps, after the rescalings asxn±1 = y(t ± σ) with α = β = σ in (52)
andxn = σ 2y(t)/(1 − σ 4) with β = 2(1 − σ 2), λ = σ 4 − 1 in (53), are rendered to

12y(t)/σ 2 = sin[y(t)] (52′)

and

12y(t)/σ 2 = y2(t) − 2y(t) (53′)

respectively. In the case of the standard map, the intersection angle was obtained [6]. To
our knowledge, however, the heteroclinic structures have not been depicted by using the
asymptotic analytical expressions. In the case of the Henon map, the homoclinic structure
is shown [8]. Since the intersection angle in this case has not yet been provided, however,
we have computed it below. For the three maps (i.e. the present, standard and Henon ones),
we find the intersection angle takes the universal form

φ = (a1/σ
µ) exp[−a2/σ ]. (54)

In (54), a1 anda2 are positive real constants andµ is a positive integer. Their values are
(µ, α1, α2) = (5,

√
5π2K/(8a6), π2/(2a)), (3, 24π4K, π2) [6] and (8, 56π2K/3,

√
2π2),

respectively, for the present, standard and Henon maps. (TheK value itself depends on
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each map, takingK ∼ 89.6, 1.503 [6] and 7374 [8] for the present, standard and Henon
maps, respectively.)

7. Conclusions

The time-discrete classical dynamics or the symplectic map for the system with a double-
well potential has been analysed, by resorting to the refinedasymptotic expansion beyond
all orders based on theoretical tools of Borel summability and Stokes phenomenon. The
homoclinic structures are shown to be nicely described by the analytical expression in
(48) and (49) including onlyl = 0, 1 terms. In particular, the stretching-type oscillations
appearing in the extreme vicinity of the hyperbolic fixed point recovers excellently the issue
of numerical iteration of the map (3) (note the scale unit∼ 10−4 in figure 5(b)). Inclusion
of higher-order(l > 2) terms is anticipated to derive the folding mechanism and thereby
to complete Birkhoff–Smale’s horse-shoe mechanism for genesis of chaos in conservative
dynamical systems. By comparative study on the present, standard and Henon maps, the
intersection angle of the first homoclinic or heteroclinic points is shown to take a universal
form showing an essential singularity atσ = 0. The latest articles [9, 10] which treat
symplectic discretizations of second-order variational equations, indicate the upper bound
for the exponential splitting. The concrete and explicit values for the intersection angle in
the present work satisfy the existing inequality.

The present framework based on the updated method ofasymptotic expansions beyond
all orders, bearing neither peculiarity nor particular difficulty of the model, will be very
useful for the analytical study of chaos in general, which has been investigated mostly by
numerical computations or scaling arguments for a long time. In this context one can also
apply the present method to dissipative systems, since symplectic properties have not been
used in the present work. It is further desirable to proceed to study analytically the quantum
and semiclassical analogues [11, 12] of the homoclinic structures.
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